Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560925

RESUMO

Continuous increasing leaf photosynthesis may enhance plant yield. As an evolutionary property, plants use less photosynthetic capacity than is theoretically possible. Plant nanobionics is a bioengineering field that improves plant functions using nanoparticles. We applied orange carbon dots (o-CDs) onto the foliage of green beans (Phaseolus vulgaris ) grown in hydroponics to improve their photosynthetic performance and CO2 assimilation. Photosynthesis parameters, photosynthetic pigments content, total phenolic content (TPC) and antioxidative activity (TAA) were measured. Results show that photosynthetic pigments remained unchanged, while photosynthesis was improved. Both o-CDs concentrations decreased TPC and TAA. The light response curve showed higher CO2 assimilation at both o-CDs concentrations, particularly at lower light intensity. Correlation analysis confirmed increased CO2 binding and assimilation at 1mg L-1 . This study demonstrated the potential of using o-CDs as a safe biostimulator through photosynthesis increase and CO2 assimilation without toxic effects on plants. This may stimulate yield increase that paves the way for their agricultural application.


Assuntos
Dióxido de Carbono , Phaseolus , Dióxido de Carbono/metabolismo , Phaseolus/metabolismo , Carbono , Fotossíntese , Luz , Plantas/metabolismo
2.
Funct Plant Biol ; 50(4): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914588

RESUMO

Cerium oxide nanoparticles (nCeO2 ) are interesting nanomaterials due to their redox properties. Their wide application could result in unexpected consequences to environmental safety. Unlike acute toxicity, the trans-generational effects of carbohydrate-coated nCeO2 in the environment are still unknown. The main aim of this study was to investigate the effect of treating maternal plants of Chenopodium rubrum L. (red goosefoot) and Sinapis alba L. (white mustard) with uncoated (CeO2 ) and glucose-, levan-, or pullulan-coated nCeO2 (G-, L-, or P-CeO2 ) during seed germination on morphological and physiological characteristics of produced seeds in two subsequent generations. The plant response was studied by measuring germination percentage (Ger), total protein content (TPC), total phenolic content (TPhC), total antioxidative activity (TAA), and catalase (CAT) activity. Results showed that maternal effects of the different nCeO2 treatments persist to at least the second generation in seeds. Generally, C. rubrum was more sensitive to nCeO2 treatments than S. alba . The coated nCeO2 were more effective than uncoated ones in both plant species; L- and P-CeO2 were the most effective in S. alba , while CeO2 and G-CeO2 had a dominant impact in C. rubrum . Enhanced germination in all tested generations of S. alba seeds recommends nCeO2 for seed priming.


Assuntos
Chenopodium , Nanopartículas , Sinapis/metabolismo , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sementes , Chenopodium/metabolismo
3.
J Agric Food Chem ; 69(19): 5446-5451, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33960776

RESUMO

The sustained increase in leaf photosynthesis may increase crop yield. Due to many limitations, plants use much less photosynthetic capacity than is theoretically possible. Plant nanobionics investigates nanoparticle application in living plants, which improves certain plant functions. We synthesized and tested nontoxic orange carbon dots (o-CDs) for the photosynthetic efficiency increase in maize (Zea mays L.). We applied o-CDs foliarly or by adding to the growth solution. The photosynthetic parameters and content of photosynthetic pigments were recorded. The total phenolic content (TPC) and total antioxidant activity (TAA) were measured to monitor the plant antioxidant response to o-CDs. The photosynthetic parameters' values were higher for foliar than for solution application. The 1 mg/L o-CDs applied foliarly and 5 mg/L in solution increased photosynthetic parameters in leaves. The o-CDs raised photosynthetic pigments. The TAA and TPC results indicate reduced antioxidant activity in the plant organs more exposed to o-CDs, depending on the way of application.


Assuntos
Citrus sinensis , Zea mays , Carbono , Fotossíntese , Folhas de Planta
4.
Aquat Toxicol ; 236: 105867, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052720

RESUMO

Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L-1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri).


Assuntos
Cério/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Animais , Organismos Aquáticos , Daphnia/efeitos dos fármacos , Frutanos/farmacologia , Glucanos , Glucose , Peixe-Zebra
5.
Colloids Surf B Biointerfaces ; 204: 111828, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33990022

RESUMO

Carbon dots are biocompatible and non-toxic nanoparticles with chemical affinity to some heavy metals. Human activities increase soil pollution with copper. Cu is an essential microelement in plants, but excess can induce a harmful effects. In plant response to Cu, the cell wall plays an important role. This study aims to estimate possible amelioration effects of folic acid based CDs on Cu toxicity by studying the intracellular and cell wall compounds in maize (Zea mays L.) roots and leaves after 7 day-treatment in hydroponics. The sub-cellular compartmentalization and bio-macromolecular changes induced by 5 µM Cu applied alone or with CDs (167 and 500 mg/L) were studied using the Synchrotron-based Fourier transformmicro-spectroscopy (SR-FTIR) combined with X-Ray photoelectron spectroscopy (XPS). Cu induced changes in content of cell wall polysaccharides, proteins, and lipids. The XPS detected CDs transport throughout the plants. The Cu/167CDs treatment reduced Cu concentration in the roots, possibly by complexation/trapping between the functional groups on CDs surface and Cu2+. Principal component analysis of FTIR spectra confirmed that Cu/500CDs treatment increased Cu adverse effects in most tissues but alleviated adverse Cu effects on cell wall polysaccharides in the root xylem, and on polysaccharides and proteins in leaf phloem and mesophyll.


Assuntos
Cobre , Zea mays , Carbono , Cobre/toxicidade , Humanos , Raízes de Plantas , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons
6.
J Sep Sci ; 44(11): 2260-2268, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33813806

RESUMO

Literature data about semi-volatile organic compounds in plants and the effect of cerium oxide nanoparticles on them are scarce. Surface modification of nanoparticles may change nanoparticle-environment interaction, and therefore affects compounds in plants. In this research, uncoated and glucose-, levan-, and pullulan-coated cerium oxide nanoparticles were used for wheat and pea treatment during the growth. The aim was the screening of semi-volatile organic compounds from plants' shoots using comprehensive two-dimensional gas chromatography-mass spectrometry, a powerful separation technique allowing to reach unique separation resolution, and investigation of qualitative changes after the treatment with coated cerium oxide nanoparticles. The results were analyzed by the identification of individual peaks and fingerprint analysis by image processing. Wheat samples contained a higher number of semi-volatile organic compounds (108) compared to pea (77) but were less affected by the treatments with coated nanoparticles. The highest number of compounds was detected in wheat after the treatment with levan- and pullulan-coated nanoparticles, and in pea after treatment with levan-coated nanoparticles. This article reports a successful application of a semi-volatile organic compounds profile presented only as categorical variables and unique fingerprint images for the inter-cultivar recognition. This method may be useful in screening nanoparticles' effects on different plants.


Assuntos
Cério/química , Nanopartículas/química , Pisum sativum/química , Triticum/química , Compostos Orgânicos Voláteis/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/química
7.
J Inorg Biochem ; 210: 111164, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634653

RESUMO

Three new ruthenium(II)-arene complexes, [Ru(η6-p-cymene)(L1)Cl2] (C1) where L1 is N-((4 methoxyphenyl)carbamothioyl)benzamide; [Ru(η6-p-cymene)(L2)Cl2] (C2) where L2 is 4-(3-benzoylthioureido)benzoic acid and [Ru(η6-p-cymene)(L3)Cl2] (C3) where L3 is methyl 4-(3- benzoylthioureido)benzoate have been synthetized, characterized and evaluated for their antimicrobial and anticancer activity. Characterization was performed using 1H and 13C NMR, IR spectroscopy, mass spectrometry, electrical conductivity measurements and X-Ray diffraction analysis. X-Ray diffraction analysis of C1 showed typical expected "piano-stool" geometry with ruthenium coordinated to ligand via nitrogen and sulfur atoms of benzoylthiourea derivatives. Interesting, in herein described complex, upon coordination the four-membered ring was formed, instead of six-membered chelate common for this type of ligands. Cytotoxic activity was determined in human cervix adenocarcinoma (HeLa) cell line and IC50 values ranged from 29.68 to 52.36 µM and the complexes were more active than related ligands (except in case of C2 where it is found that IC50 value is close to IC50 value of related ligand). Complex [Ru(η6-p-cymene)(L1)Cl2] (C1) expressed the highest cytotoxic activity with IC50 value of 29.7 µM. Complexes and ligands were tested against nine Gram-positive and Gram-negative bacteria and one yeast- Candida albicans. Clinical Candida spp. strains from microbiological laboratories were included in testing processes as well. Minimum inhibitory concentrations values ranged from 62.5 µg/ml for complexes against Candida albicans to over 1000 µg/ml for several bacterial species.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Antibacterianos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rutênio/química
8.
Plants (Basel) ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698836

RESUMO

: Reports about the influence of cerium-oxide nanoparticles (nCeO2) on plants are contradictory due to their positive and negative effects on plants. Surface modification may affect the interaction of nCeO2 with the environment, and hence its availability to plants. In this study, the uncoated and glucose-, levan-, and pullulan-coated nCeO2 were synthesized and characterized. The aim was to determine whether nontoxic carbohydrates alter the effect of nCeO2 on the seed germination, plant growth, and metabolism of wheat and pea. We applied 200 mgL-1 of nCeO2 on plants during germination (Ger treatment) or three week-growth (Gro treatment) in hydroponics. The plant response to nCeO2 was studied by measuring changes in Ce concentration, total antioxidative activity (TAA), total phenolic content (TPC), and phenolic profile. Our results generally revealed higher Ce concentration in plants after the treatment with coated nanoparticles compared to uncoated ones. Considering all obtained results, Ger treatment had a stronger impact on the later stages of plant development than Gro treatment. The Ger treatment had a stronger impact on TPC and plant elongation, whereas Gro treatment affected more TAA and phenolic profile. Among nanoparticles, levan-coated nCeO2 had the strongest and positive impact on tested plants. Wheat showed higher sensitivity to all treatments.

9.
Chem Biol Interact ; 232: 85-93, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25813935

RESUMO

Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 µM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine.


Assuntos
Antineoplásicos/farmacologia , Cério/farmacologia , Nanopartículas , Antioxidantes/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Cério/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29/efeitos dos fármacos , Humanos , Nanopartículas/química , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Triacetonamina-N-Oxil/metabolismo , Triacetonamina-N-Oxil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA